Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nat Mater ; 22(11): 1370-1379, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37798516

RESUMO

Li[LixNiyMnzCo1-x-y-z]O2 (lithium-rich NMCs) are benchmark cathode materials receiving considerable attention due to the abnormally high capacities resulting from their anionic redox chemistry. Although their anionic redox mechanisms have been much investigated, the roles of cationic redox processes remain underexplored, hindering further performance improvement. Here we decoupled the effects of nickel and cobalt in lithium-rich NMCs via a comprehensive study of two typical compounds, Li1.2Ni0.2Mn0.6O2 and Li1.2Co0.4Mn0.4O2. We discovered that both Ni3+/4+ and Co4+, generated during cationic redox processes, are actually intermediate species for triggering oxygen redox through a ligand-to-metal charge-transfer process. However, cobalt is better than nickel in mediating the kinetics of ligand-to-metal charge transfer by favouring more transition metal migration, leading to less cationic redox but more oxygen redox, more O2 release, poorer cycling performance and more severe voltage decay. Our work highlights a compositional optimization pathway for lithium-rich NMCs by deviating from using cobalt to using nickel, providing valuable guidelines for future high-capacity cathode design.

2.
Mater Horiz ; 10(9): 3631-3642, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37337936

RESUMO

In this study, we demonstrate the sintering of metastable ε-Fe2O3 nanoparticles into nanoceramics containing 98 wt% of the epsilon iron oxide phase and with a specific density of 60%. At room temperature, the ceramics retain a giant coercivity of 20 kOe and a sub-terahertz absorption at 190 GHz inherent in the initial nanoparticles. The sintering leads to an increase in the frequencies of the natural ferromagnetic resonance at 200-300 K and larger coercivities at temperatures below 150 K. We propose a simple but working explanation of the low-temperature dynamics of the macroscopic magnetic parameters of the ε-Fe2O3 materials via the transition of the smallest nanoparticles into a superparamagnetic state. The results are confirmed by the temperature dependence of the magnetocrystalline anisotropy constant and micromagnetic modeling. In addition, based on the Landau-Lifshitz formalism, we discuss features of the spin dynamics in ε-Fe2O3 and the possibility of using nanoceramics as sub-terahertz spin-pumping media. Our observations will expand the applicability of ε-Fe2O3 materials and promote their integration into telecommunication devices of the next generation.

3.
ACS Appl Mater Interfaces ; 14(35): 39907-39916, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36007961

RESUMO

All-solid-state batteries primarily focus on macrocrystalline solid electrolyte/cathode interfaces, and little is explored on the growth and stability of nanograined Li-garnet and cathode ones. In this work, a thin (∼500 nm) film of LiCoO2 (LCO) has been grown on top of the polycrystalline layer of Ta-doped Li7La3Zr2O12 (Ta-LLZO) solid electrolyte using the pulsed laser deposition (PLD) technique. Scanning transmission electron microscopy, electron diffraction, and electron tomography demonstrated that the LCO film is formed by columnar elements with the shape of inverted cones. The film appears to be highly textured, with the (003) LCO crystal planes parallel to the LCO/Ta-LLZO interface and with internal pores shaped by the {104} and {102} planes. According to density functional theory (DFT) calculations, this specific microstructure is governed by a competition between free energies of the corresponding crystal planes, which in turn depends on the oxygen and lithium chemical potentials during the deposition, indicating that thermodynamics plays an important role in the resulting LCO microstructure even under nonequilibrium PLD conditions. Based on the thermodynamic estimates, the experimental conditions within the LCO stability domain are proposed for the preferential {104} LCO orientation, which is considered favorable for enhanced Li diffusion in the positive electrode layers of all-solid-state batteries.

4.
ACS Nano ; 16(9): 14907-14917, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35984450

RESUMO

A major feature of the electrolyte/electrode interface (EEI) that affects charge storage in lithium-ion batteries is the electrical double layer (EDL), but most of the available experimental approaches for probing its structuration have limitations due to electrical field and redox reaction disturbances, hence explaining why it is frequently overlooked. Herein we show that this is no longer true by using an advanced electrochemical quartz crystal microbalance (EQCM)-based method in the form of ac-electrogravimetry. For proof of concept, we studied the effect of various solvent/salt combinations, differing in their dipole moment and size/weight, respectively, on the structure of the EDL forming at the EEI of LixMoO3. We show that a significant amount of solvated lithium ions and anions contribute to charge compensation at the interface, and by varying the nature of the solvents (cyclic vs noncyclic), we provide a solid experimental proof of the direct relationship between the ions' solvation and solvent polarity. Moreover, we demonstrated a disappearance of the anionic motion in the less polar solvent (DMC) most likely due to plausible formation of contact ion pairs and agglomerates at the EDL level. Altogether, ac-electrogravimetry, when combined with classical EQCM, stands as an elegant and powerful method to experimentally assess the chemical structure and dynamics of the electrical double layer. We hope that the community will start to adopt it to better engineer interfaces of electrochemical energy storage devices.

5.
Nat Mater ; 21(10): 1165-1174, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35725928

RESUMO

Reversible anionic redox reactions represent a transformational change for creating advanced high-energy-density positive-electrode materials for lithium-ion batteries. The activation mechanism of these reactions is frequently linked to ligand-to-metal charge transfer (LMCT) processes, which have not been fully validated experimentally due to the lack of suitable model materials. Here we show that the activation of anionic redox in cation-disordered rock-salt Li1.17Ti0.58Ni0.25O2 involves a long-lived intermediate Ni3+/4+ species, which can fully evolve to Ni2+ during relaxation. Combining electrochemical analysis and spectroscopic techniques, we quantitatively identified that the reduction of this Ni3+/4+ species goes through a dynamic LMCT process (Ni3+/4+-O2- → Ni2+-On-). Our findings provide experimental validation of previous theoretical hypotheses and help to rationalize several peculiarities associated with anionic redox, such as cationic-anionic redox inversion and voltage hysteresis. This work also provides additional guidance for designing high-capacity electrodes by screening appropriate cationic species for mediating LMCT.


Assuntos
Lítio , Cátions , Eletrodos , Ligantes , Lítio/química , Oxirredução
6.
Inorg Chem ; 61(14): 5637-5652, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35360905

RESUMO

A broad range of cationic nonstoichiometry has been demonstrated for the Li-rich layered rock-salt-type oxide Li2MoO3, which has generally been considered as a phase with a well-defined chemical composition. Li2+xMo1-xO3 (-0.037 ≤ x ≤ 0.124) solid solutions were synthesized via hydrogen reduction of Li2MoO4 in the temperature range of 650-1100 °C, with x decreasing with the increase of the reduction temperature. The solid solutions adopt a monoclinically distorted O3-type layered average structure and demonstrate a robust local ordering of the Li cations and Mo3 triangular clusters within the mixed Li/Mo cationic layers. The local structure was scrutinized in detail by electron diffraction and aberration-corrected scanning transmission electron microcopy (STEM), resulting in an ordering model comprising a uniform distribution of the Mo3 clusters compatible with local electroneutrality and chemical composition. The geometry of the triangular clusters with their oxygen environment (Mo3O13 groups) has been directly visualized using differential phase contrast STEM imaging. The established local structure was used as input for density functional theory (DFT)-based calculations; they support the proposed atomic arrangement and provide a plausible explanation for the staircase galvanostatic charge profiles upon electrochemical Li+ extraction from Li2+xMo1-xO3 in Li cells. According to DFT, all electrochemical capacity in Li2+xMo1-xO3 solely originates from the cationic Mo redox process, which proceeds via oxidation of the Mo3 triangular clusters into bent Mo3 chains where the electronic capacity of the clusters depends on the initial chemical composition and Mo oxidation state defining the width of the first charge low-voltage plateau. Further oxidation at the high-voltage plateau proceeds through decomposition of the Mo3 chains into Mo2 dimers and further into individual Mo6+ cations.

7.
Nanomaterials (Basel) ; 13(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36616077

RESUMO

Herein, we demonstrate the synthesis of sandwiched composite nanomagnets, which consist of hard magnetic Cr-substituted hexaferrite cores and magnetite outer layers. The hexaferrite plate-like nanoparticles, with average dimensions of 36.3 nm × 5.2 nm, were prepared via a glass crystallization method and were covered by spinel-type iron oxide via thermal decomposition of iron acetylacetonate in a hexadecane solution. The hexaferrite nanoplates act as seeds for the epitaxial growth of the magnetite, which results in uniform continuous outer layers on both sides. The thickness of the layers can be adjusted by controlling the concentration of metal ions. In this way, layers with an average thickness of 3.7 and 4.9 nm were obtained. Due to an atomically smooth interface, the magnetic composites demonstrate the exchange coupling effect, acting as single phases during remagnetization. The developed approach can be applied to any spinel-type material with matching lattice parameters and opens the way to expand the performance of hexaferrite nanomagnets due to a combination of various functional properties.

8.
Nat Chem ; 13(11): 1070-1080, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34531571

RESUMO

Anionic redox is a double-edged sword for Li-ion cathodes because it offers a transformational increase in energy density that is also negated by several detrimental drawbacks to its practical implementation. Among them, voltage hysteresis is the most troublesome because its origin is still unclear and under debate. Herein, we tackle this issue by designing a prototypical Li-rich cation-disordered rock-salt compound Li1.17Ti0.33Fe0.5O2 that shows anionic redox activity and exceptionally large voltage hysteresis while exhibiting a partially reversible Fe migration between octahedral and tetrahedral sites. Through combined in situ and ex situ spectroscopic techniques, we demonstrate the existence of a non-equilibrium (adiabatic) redox pathway enlisting Fe3+/Fe4+ and O redox as opposed to the equilibrium (non-adiabatic) redox pathway involving sole O redox. We further show that the charge transfer from O(2p) lone pair states to Fe(3d) states involving sluggish structural distortion is responsible for voltage hysteresis. This study provides a general understanding of various voltage hysteresis signatures in the large family of Li-rich rock-salt compounds.

9.
Nat Mater ; 20(3): 353-361, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33432141

RESUMO

Sodium ion batteries, because of their sustainability attributes, could be an attractive alternative to Li-ion technology for specific applications. However, it remains challenging to design high energy density and moisture stable Na-based positive electrodes. Here, we report an O3-type NaLi1/3Mn2/3O2 phase showing anionic redox activity, obtained through a ceramic process by carefully adjusting synthesis conditions and stoichiometry. This phase shows a sustained reversible capacity of 190 mAh g-1 that is rooted in cumulative oxygen and manganese redox processes as deduced by combined spectroscopy techniques. Unlike many other anionic redox layered oxides so far reported, O3-NaLi1/3Mn2/3O2 electrodes do not show discernible voltage fade on cycling. This finding, rationalized by density functional theory, sheds light on the role of inter- versus intralayer 3d cationic migration in ruling voltage fade in anionic redox electrodes. Another practical asset of this material stems from its moisture stability, hence facilitating its handling and electrode processing. Overall, this work offers future directions towards designing highly performing sodium electrodes for advanced Na-ion batteries.

10.
RSC Adv ; 11(46): 28593-28601, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35478592

RESUMO

The Li-based layered nickel-tin oxide Li0.35Na0.07Ni0.5Sn0.5O2 has been synthesized via electrochemically-driven Li+ for Na+ exchange in O3-NaNi0.5Sn0.5O2. The crystal structure of Li0.35Na0.07Ni0.5Sn0.5O2 was Rietveld-refined from powder X-ray diffraction data (a = 3.03431(7) Å, c = 14.7491(8) Å, S. G. R3̄m). It preserves the O3 stacking sequence of the parent compound, but with ∼13% lower unit cell volume. Electron diffraction and atomic-resolution scanning transmission electron microscopy imaging revealed short-range Ni/Sn ordering in both the pristine and Li-exchanged materials that is similar to the "honeycomb" Li/M ordering in Li2MO3 oxides. As supported by bond-valence sum and density functional theory calculations, this ordering is driven by charge difference between Ni2+ and Sn4+ and the necessity to maintain balanced bonding for the oxygen anions. Li0.35Na0.07Ni0.5Sn0.5O2 demonstrates reversible electrochemical (de)intercalation of ∼0.21 Li+ in the 2.8-4.3 V vs. Li/Li+ potential range. Limited electrochemical activity is attributed to a formation of the surface Li/Ni disordered rock-salt barrier layer as the Li+ for Na+ exchange drastically reduces the energy barrier for the Li/Ni antisite disorder.

11.
Nanomaterials (Basel) ; 10(12)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260445

RESUMO

Composite positive electrode materials (1-x) LiNi0.8Mn0.1Co0.1O2∙xLi2SO4 (x = 0.002-0.005) for Li-ion batteries have been synthesized via conventional hydroxide or carbonate coprecipitation routes with subsequent high-temperature lithiation in either air or oxygen atmosphere. A comparative study of the materials prepared from transition metal sulfates (i.e., containing sulfur) and acetates (i.e., sulfur-free) with powder X-ray diffraction, electron diffraction, high angle annular dark field transmission electron microscopy, energy-dispersive X-ray spectroscopy, and electron energy loss spectroscopy revealed that the sulfur-containing species occur as amorphous Li2SO4 at the grain boundaries and intergranular contacts of the primary NMC811 crystallites. This results in a noticeable enhancement of rate capability and capacity retention over prolonged charge/discharge cycling compared to their sulfur-free analogs. The improvement is attributed to suppressing the high voltage phase transition and the associated accumulation of anti-site disorder upon cycling and improving the secondary agglomerates' mechanical integrity by increasing interfacial fracture toughness through linking primary NMC811 particles with soft Li2SO4 binder, as demonstrated with nanoindentation experiments. As the synthesis of the (1-x) LiNi0.8Mn0.1Co0.1O2∙xLi2SO4 composites do not require additional operational steps to introduce sulfur, these electrode materials might demonstrate high potential for commercialization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...